IL-12p70 and IL-18 gene-modified dendritic cells loaded with tumor antigen-derived peptides or recombinant protein effectively stimulate specific Type-1 CD4+ T-cell responses from normal donors and melanoma patients in vitro

Abstract
Although CD4+ Type-1T helper (Th1) cells secreting interferon-γ (IFN-γ) appear to play an essential role in promoting durable antitumor immunity, we have previously shown that patients with cancer exhibit dysfunctional Th1-type responses against epitopes derived from tumor antigens, such as MAGE-A6. Here, we engineered human dendritic cells (DCs) to secrete high levels of the IFN-γ-inducing cytokines, interleukin (IL)-12p70 and IL-18, via recombinant adenoviral infection to generate an in vitro stimulus capable of promoting previously deficient patient Th1-type responses. Dendritic cells co-infected with Ad.IL-12 and Ad.IL-18 (DC.IL-12/18) were more effective at stimulating MAGE-A6-specific Th1-type CD4+ T-cell responses than DCs infected with either of the cytokine vectors alone, control Ad.Ψ5 virus or uninfected DCs. Furthermore, we show that DC.IL-12/18 loaded with recombinant MAGE-A6 protein (rMAGE) and used as in vitro stimulators promote Th1-type immunity that is frequently directed against multiple MAGE-A6-derived epitopes. The superiority of DC.IL-12/18-based stimulations in melanoma patients was independent of disease stage or current disease status. Based on these results, we believe this modality may prove clinically useful as a vaccine platform to promote the recovery of tumor antigen-specific, Th1-type CD4+ T-cell responses in patients with cancer.

This publication has 25 references indexed in Scilit: