Genome and EST Analyses and Expression of a Gene Family with Putative Functions in Insect Chemoreception

Abstract
Odorant-binding proteins (OBPs) are thought to be responsible for the transport of semiochemicals across hydrophobic interfaces to olfactory receptors. In insects, a second class of OBPs with four conserved cysteines has been variously named as sensory appendage proteins, olfactory segment-D proteins, and chemosensory proteins (CSPs). The physiological functions of these proteins have remained elusive. Here we report a comprehensive survey of both genome and expressed sequence tags (EST) databases. This showed that CSPs are apparently only present in the phylum, Arthropoda, and in two subphyla, Crustacea and Uniramia. This is the first report of a putative CSP in Crustacea and suggests that the origin of these genes predates the divergence of Uniramia and Crustacea. For the Uniramia, we identified 74 new genes encoding putative CSPs of insect species from 10 different orders. Using tissue-specific EST libraries, we have examined the relative expression of putative CSP genes in many tissues from 22 insect species suggesting that the genes are expressed widely. One Drosophila CSPs is expressed sixfold higher in head than other CSPs. One Bombyx mori CSPs was found at a very high level in pheromone gland, and for the first time, six CSPs were identified in B. mori compound eyes. The different frequencies of CSP transcripts were observed between solitary and gregarious EST libraries of Locusta migratoria.