Metabolic alterations in the human erythrocyte produced by increases in glucose concentration

Abstract
Human erythrocytes incubated in medium containing 50 mM glucose have increased intracellular sorbitol and fructose concentrations as compared with samples incubated with 5 mM glucose. Increased medium glucose concentration did not significantly alter total glucose consumption or lactate production. However, the intracellular lactate:pyruvate ratio rose, the concentrations of fructose diphosphate, and triose phosphates increased, and the 2,3-diphosphoglycerate concentration fell. [14C]O2 production from glucose-1-14C also increased with increased medium glucose concentration. These changes are believed to reflect changes in the redox states of the diphosphopyridine nucleotide/reduced form of diphosphopyridine nucleotide (NAD/NADH) and nicotinamide—adenine dinucleotide phosphate/reduced form of nicotinamide—adenine dinucleotide phosphate (NADP/NADPH) couples resulting from increased activity of the polyol pathway. Addition of pyruvate to the incubation media prevented these changes. These studies illustrate that an increase in the red cell's normal substrate, glucose, can produce changes in red cell metabolism.