ALLOANTISERUM-INDUCED INHIBITION OF MIGRATION INHIBITION FACTOR PRODUCTION IN IMMUNE RESPONSE GENE-CONTROLLED IMMUNE SYSTEMS

Abstract
We have previously demonstrated that alloantisera prepared by reciprocal immunization of strain 2 and strain 13 guinea pigs specifically block stimulation of in vitro DNA synthesis in genetically controlled systems. In order to determine whether this blockade extends to other T-lymphocyte functions, we examined the effect of alloantisera on the production of migration inhibition factor (MIF). (2 x 13)F1 guinea pigs were immunized with a DNP derivative of the copolymer of L-glutamic acid and L-lysine (DNP-GL) and with DNP guinea pig albumin (GPA). The response to the former is controlled by a 2-linked Ir gene while that to the latter is mainly controlled by a 13-linked Ir gene. MIF production was assayed by an indirect procedure in which the migrating cell population lacked the histocompatibility antigen against which the alloantiserum was directed. Our results showed that anti-2 serum blocked MIF production by F1 cells in response to DNP-GL but not DNP-GPA while anti-13 serum had the opposite effect. These experiments show that expression of a second major T-cell function is specifically blocked by alloantisera and suggest that Ir-gene products may act as antigen recognition substances on more than one type of T cell.