Effect of dinitrophenol on phosphorylation and bioelectric phenomena of excitable tissues

Abstract
The effect of 2, 4-dinitrophenol (DNP) was investigated on the phosphorylation of frog sartorius muscle and ventral nerve roots, using P32 as a tracer. It was possible almost completely to inhibit phosphorylation without significantly altering excitability, although the resting potential and intracellular potassium decreased over 30%. The addition of 0.01 mm DNP to a sodium-free hydrazinium system completely blocked excitability, despite the fact that this concentration of DNP produced no further inhibition of phosphorylation. It was possible to restore the excitability of frog sartorius muscle fibers by anodal polarization after the fibers were rendered inexcitable by immersion in 1 mm DNP. The results were discussed in terms of the role of energy metabolism in excitability and other bioelectric phenomena of muscle and nerve.