External natural convection transient response leading to transition and established turbulent flow is determined experimentally and compared with the laminar double-integral theory predictions for processes wherein all transient effects are important. The theory is shown to give very accurate predictions during the laminar portion of the transient, and temperature overshool is not observed experimentally. In addition, several unexpected and very interesting observations were made concerning the stability of the flow as it proceeds to turbulence. The first main observation is that the propagating leading edge effect serves as a very effective moving boundary layer trip and triggers the resulting turbulence. Also for the less extreme condition (less vigorous transient) there is a relaminarization of the boundary layer. Explanations of these observations are proposed in the light of recently acquired results of linear stability theory analysis for small disturbances.