Earthquake evidence for compressive stress in the southeast Australian crust

Abstract
Earthquakes in SE Australia are usually caused by compressive stresses acting in the crust, and are associated with steeply dipping faults. Sometimes the faulting is predominantly strike‐slip, as for the Bowning earthquakes of 1977 and some of the Dalton/Gunning earthquakes; and sometimes it is high‐angle thrust faulting, as for the 1961 Robertson and 1973 Picton earthquakes. No surface expression of the faults associated with any recent earthquakes in SE Australia has been reported. The directions of the pressure axes, from all the earthquakes for which focal mechanisms have been determined, do not form a consistent pattern. This suggests that the faulting associated with earthquakes in SE Australia is dominated by the geometry of pre‐existing crustal faults or zones of weakness. In situ stress measurements have not been made near the epicentral areas of the larger recent earthquakes, because of the absence of competent, near‐surface rocks coupled to the crust. However, in the western part of the Lachlan Fold Belt the in situ stress results indicate that the maximum pressure axis is approximately E‐W. The evidence from the focal mechanisms does not preclude the persistence of this stress regime farther to the east, and a regional compressive stress in the crust with an azimuth of about 120° is consistent with most of the earthquake focal mechanisms and the in situ stress measurements throughout SE Australia.