The Role of Halogens in the Plasma Polymerization of Hydrocarbons

Abstract
Vinyl chloride, vinyl fluoride, and tetrafluoroethylene were polymerized in a radio frequency electric glow discharge. It was found that when compared with the unhalogenated simple hydrocarbons, the rates of polymer deposition are in the order vinyl chloride, acetylene, tetrafluoroethylene, vinyl fluoride, ethylene. This observation can be rationalized by considering the ease with which free radical and unsaturated species can be formed in the plasma. IR spectra show that the structures of plasma-polymerized vinyl chloride and vinyl fluoride are in many respects similar to the plasma-polymerized hydrocarbon. The spectrum of plasma-polymerized tetrafluoroethylene, however, does not resemble that of conventional polytetrafluoroethylene. Addition of dichlorodifluoromethane to the monomer stream dramatically increased the polymer deposition rate; the effect is more subdued for chloromethane and is negligible for tetrafluoromethane. Elemental analysis indicates that little of the added halogens is present in the resultant polymers. Thus the halogenated compounds appear to act as a gas phase catalyst for the plasma polymerization of hydrocarbons.

This publication has 17 references indexed in Scilit: