Altered Aβ Formation and Long-Term Potentiation in a Calsenilin Knock-Out
- 8 October 2003
- journal article
- Published by Society for Neuroscience in Journal of Neuroscience
- Vol. 23 (27), 9097-9106
- https://doi.org/10.1523/jneurosci.23-27-09097.2003
Abstract
Calsenilin has been identified as a presenilin-binding protein, a transcription factor regulating dynorphin expression, and a β-subunit of Kv4 channels and could, thus, be a multifunctional protein. To study these functions of calsenilinin vivoand to determine the neuroanatomical expression pattern of calsenilin, we generated mice with a disruption of the calsenilin gene by the targeted insertion of the β-galactosidase gene. We found that calsenilin expression (as represented by β-galactosidase activity) is very restricted but overlaps better with that of presenilins and Kv4 channels than with dynorphin, suggesting that calsenilin may regulate presenilin and Kv4 channels in brain. Aβ peptide levels are reduced in calsenilin knock-out mice, demonstrating that calsenilin affects presenilin-dependent γ-cleavagein vivo. Furthermore, long-term potentiation (LTP) in dentate gyrus of hippocampus, in which calsenilin is strongly and selectively expressed, is enhanced in calsenilin knock-out mice. This enhancement of LTP coincides with a downregulation of the Kv4 channel-dependent A-type current and can be mimicked in wild-type animals by a Kv4 channel blocker. The data presented here show that lack of calsenilin affects both Aβ formation and the A-type current. We suggest that these effects are separate events, caused by a common mechanism possibly involving protein transport.Keywords
This publication has 36 references indexed in Scilit:
- Reconstitution of γ-secretase activityNature Cell Biology, 2003
- Calsenilin Enhances Apoptosis by Altering Endoplasmic Reticulum Calcium SignalingMolecular and Cellular Neuroscience, 2002
- Normal brain development in PS1 hypomorphic mice with markedly reduced γ-secretase cleavage of βAPPNeurobiology of Aging, 2002
- Remodelling inactivation gating of Kv4 channels by KChIP1, a small‐molecular‐weight calcium‐binding proteinThe Journal of Physiology, 2002
- Calsenilin Is a Substrate for Caspase-3 That Preferentially Interacts with the Familial Alzheimer's Disease-associated C-terminal Fragment of Presenilin 2Published by Elsevier ,2001
- Molecular Cloning and Expression of the Novel Splice Variants of K+ Channel-Interacting Protein 2Biochemical and Biophysical Research Communications, 2001
- Pro‐apoptotic function of calsenilin/DREAM/KChIP3The FASEB Journal, 2001
- Dendritic potassium channels in hippocampal pyramidal neuronsThe Journal of Physiology, 2000
- A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal NeuronsScience, 1997
- Expression of the prodynorphin gene in the developing and adult cerebral cortex of the rat: An in situ hybridization studyJournal of Comparative Neurology, 1990