Abstract
Sequence homologies of 27 bacterial ferredoxins were examined using a computer program that quantitatively evaluates extent of similarity as a correlation coefficient. The results of a similarity search among the sequences demonstrated that the basal sequence consists of a pair of extremely similar segments of 26 amino acids connected by a three-amino acid group. The segment pairs, which would have arisen from gene duplication, are termed the first and second units. Because of the gene duplication, the connector sequence appears to have been introduced as a structurally important chain reversal. Each of the two units contains four cysteine residues, which are inserted one by one among seven, two, two, three, and eight amino acid alignments, respectively. The bacterial ferredoxins were categorized with regard to basal constitution as follows: group 1, in which both units closely conform to the basal structure; group 2, in which the second unit is modified in a characteristic manner among members; group 3, in which the first unit is modified in a characteristic manner, while the conforming second unit is accompanied by a long accessory sequence; group 4, in which there are modifications before and/or after the units, of which the respective central domains remain nearly intact; and group 5, where only the former of two Fe:S cluster ligation sets of four cysteines is estimated to remain intact, whereas the latter set is extremely modified. It is noteworthy that throughout all bacterial ferredosins, one of two cysteine sets never fails to be completely intact and, moreover, the connector of three amino acids also exists intact. Based on this grouping and on the correspondences among the groups, average correlation coefficients among all members were computed, and the respective evolutionary relationships were examined. The results supported the proposition that transposition had occurred in theAzotobacter-type ferredoxins of group 3.

This publication has 18 references indexed in Scilit: