The pericentriolar material in Chinese hamster ovary cells nucleates microtubule formation
Open Access
- 1 June 1977
- journal article
- research article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 73 (3), 601-615
- https://doi.org/10.1083/jcb.73.3.601
Abstract
The structure and function of the centrosomes from Chinese hamster ovary (CHO) cells were investigated by electron microscopy of negatively stained wholemount preparations of cell lysates. Cells were trypsinized from culture dishes, lysed with Triton X-100, sedimented onto ionized, carbon-coated grids, and negatively stained with phosphotungstate. The centrosomes from both interphase and dividing cells consisted of pairs of centrioles, a fibrous pericentriolar material, and a group of virus-like particles which were characteristic of the CHO cells and which served as markers for the pericentriolar material. Interphase centrosomes anchored up to two dozen microtubules when cells were lysed under conditions which preserved native microtubules. When Colcemid-blocked mitotic cells, initially devoid of microtubules, were allowed to recover for 10 min, microtubules formed at the pericentriolar material, but not at the centrioles. When lysates of Colcemid-blocked cells were incubated in vitro with micotubule protein purified from porcine brain tissue, up to 250 microtubules assembled at the centrosomes, similar to the number of microtubules that would normally form at the centrosome during cell division. A few microtubules could also be assembled in vitro onto the ends of isolated centrioles from which the pericentriolar material had been removed, forming characteristic axoneme- like bundles. In addition, microtubules; were assembled onto fragments of densely staining, fibrous material which was tentatively identified as periocentriolar material by its association of CHO can initiate and anchor microtubules both in vivo and in vitro.This publication has 28 references indexed in Scilit:
- In vitro polymerization of microtubules into asters and spindles in homogenates of surf clam eggs.The Journal of cell biology, 1975
- Directionality of Brain Microtubule Assembly In VitroProceedings of the National Academy of Sciences, 1974
- Microtubule assembly: Some possible regulatory mechanismsJournal of Supramolecular Structure, 1974
- Cilia in cell-cultured fibroblasts. I. On their occurrence and relative frequencies in primary cultures and established cell lines.1969
- STRUCTURE OF THE MITOTIC SPINDLE IN L STRAIN FIBROBLASTSThe Journal of cell biology, 1965
- CYTOPLASMIC MICROTUBULES IN DIFFERENT ANIMAL CELLSThe Journal of cell biology, 1964
- Life Cycle Analysis of Mammalian CellsBiophysical Journal, 1964
- PREFERENTIAL STAINING OF NUCLEIC ACID-CONTAINING STRUCTURES FOR ELECTRON MICROSCOPYThe Journal of cell biology, 1961
- [Electron microscopic study of the ultrastructure of centrioles in vertebra].1956
- PROTEIN MEASUREMENT WITH THE FOLIN PHENOL REAGENTJournal of Biological Chemistry, 1951