Transport of bubbles in square microchannels

Abstract
Liquid/gas flows are experimentally investigated in 200 and 525 μm square microchannels made of glass and silicon. Liquid and gas are mixed in a cross-shaped section in a way to produce steady and homogeneous flows of monodisperse bubbles. Two-phase flow map and transition lines between flow regimes are examined. Bubble velocity and slip ratio between liquid and gas are measured. Flow patterns and their characteristics are discussed. Local and global dry out of the channel walls by moving bubbles in square capillaries are investigated as a function of the flow characteristics for partially wetting channels. Two-phase flow pressure drop is measured and compared to single liquid flow pressure drop. Taking into account the homogeneous liquid fraction along the channel, an expression for the two-phase hydraulic resistance is experimentally developed over the range of liquid and gas flow rates investigated.