Sex Differences in the Sleep EEG of Young Adults: Visual Scoring and Spectral Analysis

Abstract
Baseline sleep of 13 men (mean age of 23.5 years) and 15 women (21.9 years) was analyzed. Visual scoring of the electroencephalograms (EEGs) revealed no significant differences between the sexes in the amounts of slow-wave sleep and rapid-eye-movement (REM) sleep. Spectral analysis, however, detected significantly higher power densities during non-REM sleep over a wide frequency range (0.25-11.0 Hz) in the female versus male subjects. Also, during REM sleep, power densities were higher in the females. Analysis of the time course of EEG power density during sleep revealed that the differences between males and females persisted throughout the sleep episode. Comparison of these differences with published data on the effects of sleep deprivation on EEG power spectra did not suggest a common mechanism underlying sleep deprivation effects and the sex difference in sleep EEGs. It is concluded that sex differences in EEG power spectra are not likely to be caused by sex differences in sleep regulatory mechanisms but may, for instance, be caused by sex differences in skull characteristics.