Antigen- and receptor-driven regulatory mechanisms. IV. Idiotype-bearing I-J+ suppressor T cell factors induce second-order suppressor T cells which express anti-idiotypic receptors.

Abstract
Administration of azobenzenearsonate (ABA)-coupled syngeneic spleen cells intravenously to A/J mice leads to the generation of suppressor T cells (Ts1) which exhibit specific binding to ABA-bovine serum albumin (BSA)-coated dishes. These Ts1 share idiotypic determinants with the major cross-reactive idiotype (CRI) of the anti-ABA antibodies of A/J mice, and also produce a soluble suppressor factor (TsF) bearing CRI and I-J subregion-coded determinants. Injection of this TsF into naive A/J mice elicits a second set of specific suppressor cells (Ts2) which are not lysed by anti-CRI antibody plus C, and which do not bind to ABA-BSA-coated dishes. However, in contrast with Ts1, these Ts2 do bind to plates bearing CRI+ anti-ABA immunoglobulin. Thus, Ts2 exhibit anti-idiotypic specificity. These data indicate that antigen elicits the production of a soluble T cell product bearing both variable portion of the Ig heavy chain (VH) and I-J subregion-coded determinants which serves to communicate between T cell subsets to establish an idiotype-anti-idiotype regulatory pathway.