Estimation of a New Canopy Structure Parameter for Rice Using Smartphone Photography
Open Access
- 19 July 2020
- Vol. 20 (14), 4011
- https://doi.org/10.3390/s20144011
Abstract
The objective of this study was to develop a low-cost method for rice growth information obtained quickly using digital images taken with smartphone. A new canopy parameter, namely, the canopy volume parameter (CVP), was proposed and developed for rice using the leaf area index (LAI) and plant height (PH). Among these parameters, the CVP was selected as an optimal parameter to characterize rice yields during the growth period. Rice canopy images were acquired with a smartphone. Image feature parameters were extracted, including the canopy cover (CC) and numerous vegetation indices (VIs), before and after image segmentation. A rice CVP prediction model in which the CC and VIs served as independent variables was established using a random forest (RF) regression algorithm. The results revealed the following. The CVP was better than the LAI and PH for predicting the final yield. And a CVP prediction model constructed according to a local modelling method for distinguishing different types of rice varieties was the most accurate (coefficient of determination (R2) = 0.92; root mean square error (RMSE) = 0.44). These findings indicate that digital images can be used to track the growth of crops over time and provide technical support for estimating rice yields.Keywords
Funding Information
- National Key R&D Program of China (2016YFD0300604-4)
- National Natural Science Foundation of China (41671438)
This publication has 41 references indexed in Scilit:
- A novel machine-vision-based facility for the automatic evaluation of yield-related traits in ricePlant Methods, 2011
- High resolution field spectroscopy measurements for estimating gross ecosystem production in a rice fieldAgricultural and Forest Meteorology, 2010
- Cryptochrome as a Sensor of the Blue/Green Ratio of Natural Radiation in ArabidopsisPlant Physiology, 2010
- 3D lidar imaging for detecting and understanding plant responses and canopy structureJournal of Experimental Botany, 2006
- Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regressionRemote Sensing of Environment, 2003
- Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop CharacteristicsRemote Sensing of Environment, 2000
- Assessing leaf pigment content and activity with a reflectometerNew Phytologist, 1999
- Measuring Wheat Senescence with a Digital CameraCrop Science, 1999
- Evaluation of Colour Representations for Maize ImagesJournal of Agricultural Engineering Research, 1996
- Soybean Canopy Structure and Some Radiant Energy Relations1Agronomy Journal, 1971