Modelling of atmospheric pressure plasmas for biomedical applications

Abstract
As interest has increased in the interaction between low-temperature plasmas and living cells or organic materials, the role of modelling and simulation of atmospheric pressure plasmas has become important in understanding the effects of charged particles and radicals in biomedical applications. This review paper introduces the general properties of low-temperature atmospheric pressure plasma devices for biomedical applications and explains recently reported simulation results. Control parameters of atmospheric pressure plasmas, such as gas mixture composition, driving frequency and voltage and the function shape of sinusoidal and pulsed power, are considered through both a review of previous findings and new simulation results in order to improve plasma properties for given purposes. Furthermore, the simulation or modelling techniques are explained along with surface interactions of the plasma for the future development of simulation codes to study the interaction of plasmas with living cells.