Abstract
We explore the large angular scale temperature anisotropies in the cosmic microwave background (CMB) due to homogeneous local dust-filled voids in a flat Friedmann-Robertson-Walker universe with a cosmological constant. In comparison with the equivalent dust-filled void model in the Einstein-de Sitter background, we find that the anisotropy for compensated asymptotically expanding local voids can be larger because second-order effects enhance the linear integrated Sachs-Wolfe (ISW) effect. However, for local voids that expand sufficiently faster than the asymptotic velocity of the wall, the second-order effect can suppress the fluctuation due to the linear ISW effect. A pair of quasi-linear compensated asymptotic local voids with radius (2-3)*10^2 ~h^{-1} Mpc and a matter density contrast ~-0.3 can be observed as cold spots with a temperature anisotropy Delta T/T~O(10^{-5}) that might help explain the observed large-angle CMB anomalies. We predict that the associated anisotropy in the local Hubble constant in the direction of the voids could be as large as a few percent.Comment: 23 pages, 5 figures, version accepted for publication in ApJ with minor revisio

This publication has 50 references indexed in Scilit: