FabG, an NADPH-Dependent 3-Ketoacyl Reductase ofPseudomonas aeruginosa, Provides Precursors for Medium-Chain-Length Poly-3-Hydroxyalkanoate Biosynthesis inEscherichia coli

Abstract
Escherichia coli hosts expressing fabG ofPseudomonas aeruginosa showed 3-ketoacyl coenzyme A (CoA) reductase activity toward R-3-hydroxyoctanoyl-CoA. Furthermore, E. coli recombinants carrying the poly-3-hydroxyalkanoate (PHA) polymerase-encoding gene phaCin addition to fabG accumulated medium-chain-length PHAs (mcl-PHAs) from alkanoates. When E. coli fadB orfadA mutants, which are deficient in steps downstream or upstream of the 3-ketoacyl-CoA formation step during β-oxidation, respectively, were transformed with fabG, higher levels of PHA were synthesized in E. coli fadA, whereas similar levels of PHA were found in E. coli fadB, compared with those of the corresponding mutants carrying phaC alone. These results strongly suggest that FabG of P. aeruginosais able to reduce mcl-3-ketoacyl-CoAs generated by the β-oxidation to 3-hydroxyacyl-CoAs to provide precursors for the PHA polymerase.

This publication has 26 references indexed in Scilit: