The Effect of Electrostatic Forces on Electrokinetic Potentials

Abstract
Assuming that the ions in solution near a charged wall are subjected only to electrostatic and kinetic forces, it is shown that the potential gradient normal to the wall is determined principally by the valence and concentration of the ion of opposite charge to the wall. Assuming that the valence and concentration of this ion determine the effect of the salt on the electrokinetic potential of the wall, the surface potential of the wall and the thickness of the immobilized liquid layer are calculated from electrokinetic potential data. Salts of ``normal'' ions (NaCl, BaCl2, etc.) cause relatively small changes in the surface potential and thickness of the immobilized layer at a glass surface and these changes occur only at very low salt concentrations. Salts containing ``abnormal'' ions (H+, OH—, La+++, etc.) produce larger changes and the change continues over a much wider concentration range. The extreme effectiveness of salts like AlCl3 and ThCl4 in lowering negative electrokinetic potentials cannot be accounted for by the higher valence of the ions.

This publication has 2 references indexed in Scilit: