Particle size and loading efficiency of poly(D,L-lactic-coglycolic acid) multiphase microspheres containing water soluble substances prepared by the hydrous and anhydrous solvent evaporation methods
- 1 January 1999
- journal article
- research article
- Published by Taylor & Francis in Journal of Microencapsulation
- Vol. 16 (1), 49-58
- https://doi.org/10.1080/026520499289301
Abstract
PLGA multiphase microspheres were prepared by the multiple emulsion solvent evaporation method using acetonitrile as the polymer solvent and mineral oil as the evaporation medium. The preparation process was further developed in the present study to reduce the particle size and to increase the loading capacity of brilliant blue, bovine serum albumin (BSA) and tumour necrosis factor-alpha (TNF-alpha) which were used as water soluble model drug substances. Sorbitan sesqui-oleate (SO-15EX), present at the 1% w/w level in the evaporation medium, prevented agglomeration of the microspheres containing a solid-in-oil (S/O) suspension as the core phase. This S/O suspension core provided significantly higher loading efficiency of the proteins to the W/O emulsion core. The W/O emulsion system resulted in agglomeration of the protein-loaded microspheres and the loading efficiency decreased significantly. When brilliant blue was included as the model compound, the loading efficiencies were not influenced by the core type. Heavy mineral oil was employed to stabilize the dispersed unhardened microspheres rather than light mineral oil that was reported previously. This anhydrous emulsion system employing the S/O suspension core and containing a dispersion of TNF-alpha enabled the encapsulation of this protein without loss of activity. It was concluded that the anhydrous emulsion system is asuitable approach toprepare multiple microspheres as an alternative to the W/O emulsion system, especially when solvent sensitive proteins are incorporated into the microspheres.Keywords
This publication has 6 references indexed in Scilit:
- Selection of the solvent system for the preparation of poly(d,l-lactic-co-glycolic acid) microspheres containing tumor necrosis factor-alpha (TNF-α)International Journal of Pharmaceutics, 1998
- Microencapsulation of ovalbumin in poly(lactide-co-glycolide) by an oil-in-oil (o/o) solvent evaporation methodJournal of Microencapsulation, 1996
- Dissolution, Stability, and Morphological Properties of Conventional and Multiphase Poly(DL-Lactic-Co-Glycolic Acid) Microspheres Containing Water-Soluble CompoundsPharmaceutical Research, 1993
- Biodegradable nanoparticles for subcutaneous administration of growth hormone releasing factor (hGRF)Journal of Controlled Release, 1992
- Controlled Delivery Systems for Proteins Based on Poly(Lactic/Glycolic Acid) MicrospheresPharmaceutical Research, 1991
- Sustained Release of Insulin by Double-Layered Implant Using Poly(d,l-Lactic Acid)Journal of Pharmaceutical Sciences, 1990