Abstract
The structure of nitrogen-fixing nodules produced by Rhizobium infection of the non-legume Parasponia andersonii was examined by light and electron (both SEM and TEM) microscopy. Comparisons were made with the nodules previously described on P. rugosa. Like the nodules on different non-legumes formed by other types of endophytes, the Rhizobium nodules on Parasponia resembled modified roots by having a central vascular bundle surrounded by an endophyte-infected zone. The intimate association between the Rhizobium and the host nodule cell was compared with the Rhizobium association found in legumes. The rhizobia were not released from the infection thread as happens in the legume. The infection thread, which propagates the Rhizobium infection to new cells, was transformed within a nodule cell from a darkly stained (light microscopy) or very electron-dense (TEM) structure to a number of thread types. The walls of the threads varied greatly in thickness and often the thread structures were without rigid walls and were only enclosed by a plasma membrane. If the rhizobia are transformed into bacteroids, as in the legumes, it would have to occur when the threads had reached their mature size, when bacterial division had ceased. Nitrogen fixation was considered to occur in all thread types.