Insulin regulation of amino acid transport in mesenchymal cells from avian and mammalian tissues

Abstract
Insulin regulation of amino acid transport across the cell membrane was studied in a variety of mesenchymal cells directly isolated from avian and mammalian tissues or collected from confluent cultures. Transport activity of the principal systems of mediation in the presence and absence of insulin was evaluated by measuring the uptake of representative amino acids under conditions approaching initial entry rates. Insulin enhanced the transport rate of substrate amino acids from the A system (.alpha.-aminoisobutyric acid, L-proline, glycine, L-alanine and L-serine) in fibroblasts and osteoblasts from chick-embryo tissues, in mesenchymal cells (fibroblasts and smooth muscle cells) from immature rat uterus, in thymic lymphocytes from young rats and in chick-embryo fibroblasts from confluent secondary cultures. In these tissues, the uptake of amino acid substrates of transport systems L and Ly+ (L-leucine, L-phenylalanine, L-lysine) was not affected by the presence of the hormone. No insulin control of amino acid transport was detected in chick-embryo chondroblasts and rat peritoneal macrophages. These observations identify the occurrence of hormonal regulatory patterns of amino acid transport for different mesenchymal cell types and indicate that these properties emerge early during cell differentiation.