LMS estimation via structural detection

Abstract
We consider the LMS estimation of a channel that may be well approximated by an FIR model with only a few nonzero tap coefficients within a given delay horizon or tap length n. When the number of nonzero tap coefficients m is small compared with the delay horizon n, the performance of the LMS estimator is greatly enhanced when this specific structure is exploited. We propose a consistent algorithm that performs identification of nonzero taps only. The results are illustrated via a simulation study.

This publication has 14 references indexed in Scilit: