Abstract
We have established experimental strategies on how to create a Menger sponge-like fractal body and how to control its fractal dimension. The essence was to utilize alkylketene dimer (AKD), which spontaneously forms super-water-repellent fractal surface. We prepared "fractal AKD particles" with fractal surface structure as templates of pores in fractal body. The fractal body was synthesized by filling the remained space between the packed template particles with a tetramethyl orthosilicate solution, solidifying it by the sol-gel process, and removing the template by calcinations. We have succeeded in systematically creating fractal bodies of silica with different cross-sectional fractal dimensions D(cs)=1.87, 1.84, and 1.80 using "fractal template particles" compressed under the ratio=1.0, 2.0, and 3.0, respectively. We also discussed the possibilities of their fractal geometries in comparison with mathematical models. We concluded that the created fractal bodies were close to a Menger sponge and its modified one. Our experimental strategy allows us to design fractality of porous materials.