Detecting Stripping in Asphalt Concrete Layers Using Ground Penetrating Radar

Abstract
A study undertaken by the Texas Department of Transportation to nondestructively detect stripping in the asphalt surfacing on I-45 in the Bryan district is described. The highway was constructed in the 1960s and 1970s with an initial portland cement concrete thickness of 200 mm. Since then, several asphalt overlays have been applied. Maintenance of this highway is a recurring problem, and it is known that in several locations moderate to severe areas of subsurface stripping are present. To plan the future rehabilitation of this important highway, the Bryan district investigated the ability of ground penetrating radar (GPR) to provide subsurface condition information. A GPR survey was conducted at close to highway speeds, and the data were interpreted before taking validation cores. The GPR was used to provide information concerning the section breaks along the highway on the basis of asphalt layer thickness and condition, the average thickness of the asphalt layer within each section, and the extent and severity of any defect in the asphalt layer. More than 60 cores were taken to correlate the GPR interpretation. GPR results and ground truth cores are compared. In general, the comparisons were good. The GPR equipment and interpretation schemes used were found to provide information of sufficient quality and accuracy to permit the district to make programming decisions. GPR is now being used on several additional projects in the Bryan district. The best use appears to be for both defect detection and thickness estimation before deflection testing and coring. GPR will not eliminate coring or deflection testing, but by using all three in a coordinated approach pavement designers will have more confidence in their design decisions.