Dopant density determination in disordered organic field-effect transistors

Abstract
We demonstrate that, by using a concentric device geometry, the dopant density and the bulk charge-carrier mobility can simultaneously be estimated from the transfer characteristics of a single disordered organic transistor. The technique has been applied to determine the relation between the mobility and the charge density in solution-processed poly(2,5-thienylene vinylene) and poly(3-hexyl thiophene) thin-film field-effect transistors. The observation that doping due to air exposure takes place already in the dark, demonstrates that photoinduced oxygen doping is not the complete picture.