Graphitic carbon nitride (g-C3N4)–Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation

Abstract
Porous graphitic carbon nitride (g-C3N4) was prepared by a simple pyrolysis of urea, and then a g-C3N4–Pt-TiO2 nanocomposite was fabricated via a facile chemical adsorption followed by a calcination process. The obtained products were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis diffuse reflectance absorption spectra, and electron microscopy. It is found that the visible-light-induced photocatalytic hydrogen evolution rate can be remarkably enhanced by coupling TiO2 with the above g-C3N4, and the g-C3N4–Pt-TiO2 composite with a mass ratio of 70 : 30 has the maximum photoactivity and excellent photostability for hydrogen production under visible-light irradiation, and the stable photocurrent of g-C3N4–TiO2 is about 1.5 times higher than that of the bare g-C3N4. The above experimental results show that the photogenerated electrons of g-C3N4 can directionally migrate to Pt-TiO2 due to the close interfacial connections and the synergistic effect existing between Pt-TiO2 and g-C3N4 where photogenerated electrons and holes are efficiently separated in space, which is beneficial for retarding the charge recombination and improving the photoactivity.