Mechanisms of Late Restriction Induced by an Endogenous Retrovirus

Abstract
The host has developed during evolution a variety of "restriction factors" to fight retroviral infections. We investigated the mechanisms of a unique viral block acting at late stages of the retrovirus replication cycle. The sheep genome is colonized by several copies of endogenous retroviruses, known as enJSRVs, which are highly related to the oncogenic jaagsiekte sheep retrovirus (JSRV). enJS56A1, one of the enJSRV proviruses, can act as a restriction factor by blocking viral particles release of the exogenous JSRV. We show that in the absence of enJS56A1 expression, the JSRV Gag (the retroviral internal structural polyprotein) targets initially the pericentriolar region, in a dynein and microtubule-dependent fashion, and then colocalizes with the recycling endosomes. Indeed, by inhibiting the endocytosis and trafficking of recycling endosomes we hampered JSRV exit from the cell. Using a variety of approaches, we show that enJS56A1 and JSRV Gag interact soon after synthesis and before pericentriolar/recycling endosome targeting of the latter. The transdominant enJS56A1 induces intracellular Gag accumulation in microaggregates that colocalize with the aggresome marker GFP-250 but develop into bona fide aggresomes only when the proteasomal machinery is inhibited. The data argue that dominant-negative proteins can modify the overall structure of Gag multimers/viral particles hampering the interaction of the latter with the cellular trafficking machinery.