The peaking phenomenon and the global stabilization of nonlinear systems

Abstract
The problem of global stabilization is considered for a class of cascade systems. The first part of the cascade is a linear controllable system and the second part is a nonlinear system receiving the inputs from the states of the first part. With zero input, the equilibrium of the nonlinear part is globally asymptotically stable. In linear systems, a peaking phenomenon occurs when high-gain feedback is used to produce eigenvalues with very negative real parts. It is established that the destabilizing effects of peaking can be reduced if the nonlinearities have sufficiently slow growth. A detailed analysis of the peaking phenomenon is provided. The tradeoffs between linear peaking and nonlinear growth conditions are examined.

This publication has 40 references indexed in Scilit: