Expansion of chondrocytes for tissue engineering in alginate beads enhances chondrocytic phenotype compared to conventional monolayer techniques

Abstract
Chondrocytes are known to dedifferentiate when cultured in monolayer culture, which may compromise the efficacy of cartilage repair systems in which cells are expanded by repeat passage in monolayer prior to implantation. We tested the hypothesis that repeat passage in alginate beads can provide sufficient expansion of cells, while producing cells with enhanced chondrocytic phenotype. Bovine articular chondrocytes were seeded in 2% alginate beads or in monolayer. 4 passages at 7-day intervals were performed. Values of 9.1 days for monolayer expansion and 12.5 days for alginate expansion were estimated for a 10-fold increase in cell number. For assessment of chondrocytic and fibroblastic phenotype, expanded cells were seeded in alginate beads or on glass coverslips and cultured for 7 days. On subsequent seeding in alginate, cells which had previously been subcultured in alginate showed higher levels of both DNA and GAG synthesis than cells passaged in monolayer. Furthermore, the alginate-passaged cells retained a chondrocytic phenotype, indicated by synthesis of type II collagen and chondroitin-6-sulphate, while cells passaged in monolayer synthesised type I collagen, indicating a fibroblastic phenotype. In conclusion, expansion of cells for autologous cartilage repair systems, using subculture within alginate beads, provides a potentially attractive alternative to monolayer expansion.