Lipoatrophic diabetes in Irs1−/−/Irs3−/− double knockout mice

Abstract
Based on the phenotypes of knockout mice and cell lines, as well as pathway-specific analysis, the insulin receptor substrates IRS-1, IRS-2, IRS-3, and IRS-4 have been shown to play unique roles in insulin signal transduction. To investigate possible functional complementarity within the IRS family, we generated mice with double knockout of the genes for IRS-1/IRS-3 and IRS-1/IRS-4. Mice with a combined deficiency of IRS-1 and IRS-4 showed no differences fromIrs1−/− mice with respect to growth and glucose homeostasis. In contrast, mice with a combined deficiency of IRS-1 and IRS-3 developed early-onset severe lipoatrophy associated with marked hyperglycemia, hyperinsulinemia, and insulin resistance. However, in contrast to other models of lipoatrophic diabetes, there was no accumulation of fat in liver or muscle. Furthermore, plasma leptin levels were markedly decreased, and adenovirus-mediated expression of leptin in liver reversed the hyperglycemia and hyperinsulinemia. The results indicate that IRS-1 and IRS-3 play important complementary roles in adipogenesis and establish theIrs1−/−/Irs3−/− double knockout mouse as a novel model of lipoatrophic diabetes.