Superinduction of cyclooxygenase-2 activity in human osteoarthritis-affected cartilage. Influence of nitric oxide.

Abstract
Cartilage specimens from osteoarthritis (OA)-affected patients spontaneously released PGE2 at 48 h in ex vivo culture at levels at least 50-fold higher than in normal cartilage and 18-fold higher than in normal cartilage + cytokines + endotoxin. The superinduction of PGE2 production coincides with the upregulation of cyclooxygenase-2 (COX-2) in OA-affected cartilage. Production of both nitric oxide (NO) and PGE2 by OA cartilage explants is regulated at the level of transcription and translation. Dexamethasone inhibited only the spontaneously released PGE2 production, and not NO, in OA-affected cartilage. The NO synthase inhibitor HN(G)-monomethyl-L-arginine monoacetate inhibited OA cartilage NO production by > 90%, but augmented significantly (twofold) the spontaneous production of PGE2 in the same explants. Similarly, addition of exogenous NO donors to OA cartilage significantly inhibited PGE2 production. Cytokine + endotoxin stimulation of OA explants increased PGE2 production above the spontaneous release. Addition of L-NMMA further augmented cytokine-induced PGE2 production by at least fourfold. Inhibition of PGE2 by COX-2 inhibitors (dexamethasone or indomethacin) or addition of exogenous PGE2 did not significantly affect the spontaneous NO production. These data indicate that human OA-affected cartilage in ex vivo conditions shows (a) superinduction of PGE2 due to upregulation of COX-2, and (b) spontaneous release of NO that acts as an autacoid to attenuate the production of the COX-2 products such as PGE2. These studies, together with others, also suggest that PGE2 may be differentially regulated in normal and OA-affected chondrocytes.