Sigmoid Relationships between Phosphorus, Algal Biomass, and Algal Community Structure

Abstract
It has long been recognized that there is a positive relationship between total phytoplankton biomass and eutrophication. Recent independent studies demonstrated that algal biomass (chlorophyll) actually responds in a nonlinear, sigmoidal fashion with increasing phosphorus levels among lakes. Chlorophyll has been considered (by some authors) as an inconsistent estimate of algal biomass. Using a wide range of published data, we first demonstrate that the sigmoidal nature of the phosphorus–biomass relationship is quite robust, and not simply generated by a systematic variation in the relationship between algal chlorophyll to cell volume ratio and nutrient levels. We show that the sigmoid relationship with total phosphorus persists whether algal biomass is measured by chlorophyll or biovolume. We hypothesize that this nonlinearity actually reflects an underlying systematic variation in one or more of the components of total phytoplankton biomass. In this paper, we examine two functional size groups and show that the large inedible fraction exhibits a strong, nonlinear response to increasing nutrient levels, while the small edible algae do not vary systematically with phosphorus. We hypothesize that this discontinuous shift in the ratio of edible to inedible phytoplankton should be accompanied by concomitant shifts in the structure of the herbivore community.