Phenomenological Analysis of Ground-State Bands in Even-Even Nuclei
- 20 February 1969
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 178 (4), 1864-1886
- https://doi.org/10.1103/physrev.178.1864
Abstract
A variable-moment-of-inertia (VMI) model is proposed which permits an excellent fit of level energies of ground-state bands in even-even nuclei. In this model the energy of a level with angular momentum is given by the sum of a potential energy term (where is the ground-state moment of inertia) and a rotational energy term . It is required that the equilibrium condition be satisfied for each state. Each nucleus is described by two adjustable parameters, and (the softness parameter), which are determined by a least-squares fit of all known levels. The calculated level energies and moments of inertia , , and are tabulated for 88 bands, ranging from Pd to Pt and from Th to Cm. Projections of three-dimensional arrays of and on the () plane are shown. These parameters are found to vary smoothly as function of and . Breaks occur at . The osmium nuclei show a pronounced maximum for and an equally pronounced minimum for at 108 neutrons. In Pt, decreases steeply to 110 neutrons and then more slowly, while increases correspondingly. The stable Pt nuclei with still possess appreciable moments of inertia and large but "finite" softness parameters. Hence they may be characterized as "pseudospherical." For nuclei exhibiting a near-harmonic level pattern (like , , and other neutron-deficient rare-earth isotopes), becomes exceedingly small, but already for the 2+ state is several orders of magnitude larger. The parameters of some bands in even-even nuclei and of bands found in odd-odd nuclei are related to those of appropriate ground-state bands in even-even nuclei. Evidence for a rotational band in is deduced from recently published experimental results. A plot of versus , presented for the discussion of the region of validity of the model, namely, , reveals new regularities. The empirical "Mallmann curves" ( plotted versus ) are deduced from the VMI model within its region of validity. Graphs are presented which allow the determination of (for ) and of and for each even-even nucleus for which the first 2+ and 4+ states are known. The model suggested by Harris, which includes the next-higher-order correction of the cranking model, is shown to be mathematically equivalent to the VMI model. The recently discovered appreciable quadrupole moments of 2+ states of "spherical nuclei" are compatible with the moments of inertia of these states given by the VMI model. The relation between and is explored.
Keywords
This publication has 37 references indexed in Scilit:
- Nuclear transition probability, B(E2), for 0g.s.+ – 2first+ transitions and deformation parameter, β2Nuclear Data Sheets. Section A, 1965
- Coulomb excitation of vibrational triplet states and octupole states in the even cadmium nucleiNuclear Physics, 1965
- Lifetimes of 4+ and 2+ States in the Rotational Nuclei , , , , andPhysical Review B, 1963
- Studies of Decay Schemes in the Osmium-Iridium Region. III. Decay of 15.8-HourPhysical Review B, 1963
- Coulomb Excitation of Second 2+ States in , , , , andPhysical Review B, 1962
- Coulomb Excitation of SecondStates in Even-Even Medium Weight NucleiPhysical Review B, 1961
- System of Levels in Even-Even NucleiPhysical Review Letters, 1959
- Rotational states in even atomic nucleiNuclear Physics, 1958
- Regularities in the Level Schemes of Heavy Even-Even NucleiPhysical Review B, 1956
- System of Even-Even NucleiPhysical Review B, 1955