In vitro demonstration of transport and delivery of antibiotics by polymorphonuclear leukocytes

Abstract
Several antibiotics are concentrated inside polymorphonuclear leukocytes (PMN). To investigate whether PMN could act as vehicles for delivery of antibiotics, we combined an assay measuring PMN chemotaxis under agarose with a bioassay measuring levels of antibiotic in agar. Double-layer plates were made by pouring a layer of chemotaxis agarose into tissue culture plates and then adding a thin layer of Trypticase soy agar. Neutrophils were incubated with antibiotic for 1 h and then were washed and placed in wells made in the plates. After allowing PMN to migrate under the agar toward a chemoattractant well containing formyl-methionine-leucine-phenylalanine for 3 h, Streptococcus pyogenes was streaked on top of the agar and grown overnight. PMN migration and zones of inhibition of bacterial growth were measured. Neutrophils migrated 2.51 +/- 0.16 mm toward the chemoattractant well and 1.48 +/- 0.12 mm toward the medium well; migration was not significantly affected by any of the antibiotics used. Plates with PMN incubated without antibiotic showed insignificant inhibition of bacterial growth toward chemoattractant and medium wells (0.38 +/- 0.18 and 0.14 +/- 0.12 mm, respectively; for both, P > 0.05 for difference from 0). PMN incubated with oxacillin (3 micrograms/ml), a drug not concentrated in PMN, caused a similar lack of inhibition (0.28 +/- 0.09 mm toward chemoattractant; 0.14 +/- 0.03 mm toward medium). Incubation with 30 microns of ciprofloxacin per ml resulted in inhibition that was similar in both directions (1.40 +/- 0.16 versus 1.18 +/- 0.13 mm). However, for PMN incubated with azithromycin (3 micrograms/ml), an agent highly concentrated inside phagocytes, there was a large degree of inhibition which was significantly greater in the direction of chemoattractant than in the direction of medium (3.47 +/- 0.30 versus 1.89 +/- 0.25 mm; P < 0.001), indicating that release of bioactive azithromycin by neutrophils occurred after migration. Likewise, after incubation with rifampin (10 micrograms/ml), which is also concentrated by PMN, inhibition was significantly greater in the direction of chemoattractant than in the direction of medium (1.54 +/- 0.24 versus 0.81 +/- 0.28 mm; P = 0.001). We conclude that for certain antibiotics, PMN may act as vehicles for transport and delivery of active drug to sites of infection.