Abstract
Human recombinant interleukin 2 (hrIL-2) was demonstrated in vitro to be chemotactic for mouse large granular lymphocytes (LGL) activated in vivo by virus infection. Peritoneal exudate cells harvested from virus-infected mice were used as a source of LGL. LGL collected from mouse hepatitis virus-infected mice at 3 days postinfection were a source for NK 1.1 positive natural killer (NK)/LGL. LGL collected from mice treated with antiserum to gangliotetraosylceramide and infected with lymphocytic choriomeningitis virus for 7 days were used as a source for Lyt-2 positive cytotoxic T lymphocytes (CTL)/LGL. Both NK/LGL and CTL/LGL responded chemotactically to hrIL-2, purified IFN-beta, and to crude cell-free washout fluids collected from the peritoneal cavity of virus-infected mice. hrIL-2 had chemotactic activity for virus-elicited granular and agranular lymphocytes but did not attract the contaminating macrophages, in contrast to IFN-beta, which displayed chemotactic activity for virus-elicited granular and agranular lymphocytes as well as macrophages. The migration to hrIL-2 was inhibited by a monoclonal antibody (7D4) to the IL-2 receptor, but treatment with 7D4 did not affect migration in response to IFN-beta. Microscopic examination of Wright's-Giemsa-stained migrated NK/LGL and CTL/LGL revealed that the majority of migrated LGL in either LGL population had a blast cell morphology (enlarged cells with rich basophilic cytoplasm). The frequency of cells bearing the LGL morphology within the virus-elicited nonadherent peritoneal exudate cell population was on incubation in vitro, stabilized by either hrIL-2 or IFN-beta. These data suggest that another important immunomodulating function of IL-2 may be to attract activated NK/LGL and CTL/LGL to sites of inflammation.