Abstract
A detailed model, including current spreading, carrier diffusion, and corresponding modal gains, is developed for a well-defined vertical-cavity surface-emitting laser structure. Above-threshold-operation (hole burning) is also analyzed by the model to quantitatively demonstrate the influence of injecting contact geometry and size in determining monomode operation. Results from this model demonstrate the importance of modal gain dynamics in establishing stable operation of such devices and hence the model may be used for improved device design.