Abstract
In the presence of an intestinal unstirred water layer, the relationship between substrate concentration (C 1) and unidirectional flux (J d) is not described by the equation for a rectangular hyperbole. Accordingly, transformations of the Michaelis-Menten equation may not necessarily be linear and may lead to serious errors in the estimation of the affinity constant (K m) and maximal transport rate (J d m ) of carrier-mediated processes. An equation has previously been derived which describedJ d under conditions of varying effective thickness or surface area of the unstirred water layer, the free diffusion coefficient of the probe molecule, and the distribution of transport sites along the villus. These theoretical curves have been analyzed by using the Eadie-Hofstee transformation (J d vs. Jd/C1) of the Michaelis-Menten equation. Use of this plot leads to serious discrepancies between the true and apparent affinity constants and between true and apparent maximal transport rates. These differences are further magnified by failure to correct for the contribution of passive permeation. The Eadie-Hofstee plot is of use, however, to infer certain qualitative characteristics of active transport processes, such as the variation in affinity constants and overlying resistance of the unstirred water layer at different sites along the villus and to predict the adequacy of the correction for the contribution of passive permeation.