In Vitro Derived Dendritic Cells trans-Infect CD4 T Cells Primarily with Surface-Bound HIV-1 Virions

Abstract
In the prevailing model of HIV-1 trans-infection, dendritic cells (DCs) capture and internalize intact virions and transfer these virions to interacting T cells at the virological synapse. Here, we show that HIV-1 virions transmitted in trans from in vitro derived DCs to T cells principally originate from the surface of DCs. Selective neutralization of surface-bound virions abrogated trans-infection by monocyte-derived DCs and CD34-derived Langerhans cells. Under conditions mimicking antigen recognition by the interacting T cells, most transferred virions still derived from the cell surface, although a few were transferred from an internal compartment. Our findings suggest that attachment inhibitors could neutralize trans-infection of T cells by DCs in vivo. Dendritic cells (DCs) patrol peripheral mucosal sites, capturing and processing potential pathogens into antigenic peptides for presentation to T cells of lymphoid organs, and thereby initiating an immune response. HIV-1 had been proposed to use DCs as “Trojan horses,” hiding inside the DCs and surviving the degradation pathway to gain access to the lymph nodes and spread to the T cells. Our study challenges this “Trojan horse” model by showing that only HIV-1 virions bound to the surface of DCs, and not internalized virions, are transmitted to T cells. Even when T cells specifically recognized the antigen presented by DCs, the infection of T cells was principally mediated by virions remaining at the surface of the DCs. Interestingly, in this context of antigen-specific recognition, which increases the trafficking toward the immunological synapse of DC internal vesicles, where HIV-1 virions seem to hide, a few internal virions could infect T cells. Our findings suggest that in vivo transmission to T cells of HIV-1 virions captured by DCs should be more sensitive to neutralization than previously expected.