Does interstitial lung edema compress airways and arteries? A morphometric study

Abstract
We compared areas and diameters of small airways and arteries in three groups of anesthetized dogs: 1) control (n = 5), 2) hydrostatic edema induced by fluid overload (n = 13), and 3) increased permeability edema induced with alpha-naphthylthiourea (n = 5). We measured pulmonary arterial and wedge pressures in all groups and cardiac output in the hydrostatic edema group. Postmortem, lobes were frozen at functional residual capacity and samples taken for measurements of extravascular lung water (Qwl/dQl) and for light microscopy. We also examined lobes from hydrostatic edema experiments fixed at transpulmonary pressures of 5 and 27 cmH2O. From the histology slides, bronchovascular bundles with respiratory bronchioles (n = 706) and bronchioles (n = 467) were photographed and airway and vessel areas and diameters measured. Alveolar and airway luminal edema were graded. We found that only in hydrostatic edema, pulmonary arterial and wedge pressures increased and vascular resistance fell with fluid infusion. Mean Qwl/dQl values were 3.80 +/- 0.17, 6.81 +/- 0.96, and 9.34 +/- 0.62 (SE) in control, hydrostatic, and increased permeability edema groups, respectively. By quantitative histology, airway and arterial areas and diameters did not decrease in edema and rose with increasing transpulmonary pressure. Variable quantities of air-space edema were seen. We conclude that interstitial edema does not compress small airways or arteries and that other mechanisms, including alveolar and airway luminal edema, may explain reported increases in airway resistance.