Effects of calcium binding on the internal dynamic properties of bovine brain calmodulin, studied by NMR and optical spectroscopy

Abstract
The dynamic properties of bovine brain calmodulin have been studied as a function of binding calcium ions, using a number of complementary spectroscopic methods. Rotational correlation times for proton-proton vectors within tyrosine and phenylalanine residues of calmodulin have been determined from time-dependent NOE measurements. In the presence of Ca2+, a range of rotational correlation times is observed. The longest value is consistent with Ca4-calmodulin having a markedly nonspherical shape in solution. In the absence of Ca2+, the rotational correlation times of all vectors are significantly shorter, indicating that several phenylalanine side chains in apocalmodulin have increased internal dynamics. Time-resolved tyrosine fluorescence anisotropy shows global correlation times broadly in agreement with the NMR results, but with an additional faster correlation time [approximately 600 ps]. Tyrosine residues in apocalmodulin have substantial segmental motion, which becomes significantly reduced, but not eliminated, when Ca2+ is bound. The correlation time for global rotation of Ca4-calmodulin increases from pH 7 to 4.5, indicating increased overall molecular asymmetry. This occurs without a significant change in total alpha-helix content as measured by circular dichroism. These results are consistent with the central region of Ca4-calmodulin being relatively flexible in solution at pH 7, but with the molecule adopting a more extended shape under more acidic conditions. The Ca(2+)-induced change in alpha-helix content can be mimicked by protonation. The alpha-helix content of Ca4-calmodulin in solution appears less than in the crystal structure; additional alpha-helix is induced in partially nonaqueous solutions, particularly at acidic pH, as used in crystallization conditions.