Structure and Conformation of the Duplex Consensus Acceptor Exon: Intron Junction d [(CpTpApCpApGpGpT) (ApCpCpTpGpTpApG)] deduced from High-Field1H-NMR of Non-Exchangeable and Imino Protons

Abstract
The complementary consensus acceptor exon:intron junction d(ApCpCpTpGpTpApG) has been synthesized by a modified phosphotriester method. The non self-complementary octamer exists in the random coil form in aqueous buffer at 20°C as evidenced by temperature variable 1H-NMR and NOE measurements. The non-exchangeable proton assignments were secured using a combination of techniques including two-dimensional COSY, NOESY and 1H-1H-INADEQUATE. The octamer was annealed with the primary consensus sequence d(CpTpApCpApGpGpT). Confirmation of complete duplex formation was confirmed by detection and assignment of imino protons in D2O:H2O mixtures. Assignment of the nonexchangeable proton signals in the duplex consensus junction was then secured by a combination of two-dimensional COSY correlations, NOESY and NOE experiments. Determination of individual vicinal coupling constants in the component deoxyribose moieties permitted deduction of the population of S conformations in this sequence. It is concluded that the consensus acceptor junction exists in solution in a conformation belonging to the B family, and that the bases are oriented anti. In addition the deoxyribose moieties in the 5′ regions exist predominantly in the S form (2′endo—3′exo) whereas those residues on or adjacent to the junction on the primary strand show more N character (2′exo—3′endo). The contiguous bases A5-G6 (adjacent to the junction) and A15-G16 are stacked more closely than the other neighbor bases in this duplex sequence. These subtle structural and conformational differences in the exon:intron junction may serve as recognition signals for these critical sites in the genome.