Myelinated fiber regeneration after crush injury is retarded in sciatic nerves of aging mice
- 8 June 1991
- journal article
- research article
- Published by Wiley in Journal of Comparative Neurology
- Vol. 308 (2), 180-187
- https://doi.org/10.1002/cne.903080205
Abstract
To compare nerve regeneration in young adult and aging mice, the right sciatic nerves of 6‐ and 24‐month‐old mice were crushed at the sciatic notch. Two weeks later, both groups of mice were perfused with an aldehyde solution, and, after additional fixation, the sciatic nerves were processed so that the transverse sections of each, nerve subsequently studied by light and electron microscopy included the entire posterior tibial fascicle 5 mm distal to the crush site. The same level was sectioned in unoperated contralateral nerves; these nerves served as controls. Electron micrographs and the Bioquant Image Analysis System IV were used to measure areas of posterior tibial fascicles and count the number of myelinated axons, the number of unmyelinated axons, and their frequency in Schwann cell units. In aging mice, the total number of regenerating myelinated axons was significantly reduced, but totals of regenerating unmyelinated axons in aging and young adults did not differ significantly. In aging mice, the frequency of Schwann cells that contained a single unmyelinated axon was greater, suggesting that before myelination began, Schwann cell ensheathment of axons also was slowed. After axotomy by a crush injury, the area of the posterior tibial fascicle was less than that in young adults and the distal disintegration of myelin sheath remnants also appeared to be retarded. The results indicate that responses of neurons, axons, and Schwann cells could be important in slowing the regeneration of myelinated fibers found in sciatic nerves from aging mice.This publication has 31 references indexed in Scilit:
- Peripheral Nerve RegenerationAnnual Review of Neuroscience, 1990
- Macrophage‐like cells from explant cultures of rat sciatic nerve produce apolipoprotein EJournal of Neuroscience Research, 1988
- Linkage Between Axonal Ensheathment and Basal Lamina Production by Schwann CellsAnnual Review of Neuroscience, 1986
- The role of non-resident cells in Wallerian degenerationJournal of Neurocytology, 1984
- Axonal transport of glycerophospholipids in regenerating sciatic nerve of the rat during agingJournal of Neuroscience Research, 1983
- Effects of aging on nerve sprouting and regenerationExperimental Neurology, 1980
- Slowing of the rate of axonal regeneration during growth and maturationExperimental Neurology, 1979
- Evidence that contact with connective tissue matrix is required for normal interaction between Schwann cells and nerve fibers.The Journal of cell biology, 1978
- An electron microscopic study of the relationship between axon diameter and the initiation of myelin production in the peripheral nervous systemThe Anatomical Record, 1968
- A relation between axone diameter and myelination determined by measurement of myelinated spinal root fibersJournal of Comparative Neurology, 1934