Optimized Free-Energy Evaluation Using a Single Reversible-Scaling Simulation

Abstract
We present a method, for highly efficient free-energy calculations by means of molecular dynamics and Monte Carlo simulations, which is an optimized combination of coupling parameter and adiabatic switching formalisms. This approach involves dynamical reversible scaling of the potential energy function of a system of interest, and allows accurate determination of its free energy over a wide temperature interval from a single simulation. The method is demonstrated in two applications: crystalline Si at zero pressure and a fcc nearest-neighbor antiferromagnetic Ising model.