Transcriptional activation of the human osteocalcin gene by basic fibroblast growth factor

Abstract
Basic fibroblast growth factor (bFGF) has been detected in bone cells and stimulates osteoblast proliferation; however, its role in the regulation of bone metabolism remains speculative. We demonstrated that the human osteocalcin promoter is activated by bFGF when transfected into rat osteoblastic (ROS 17/2.8) cells. This effect is concentration dependent, with a twofold induction at 10 ng/ml detected after 20 h. The bFGF response is independent of both the 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] and retinoic acid activation of the osteocalcin promoter. To identify the promoter sequences through which bFGF exerts its effect, we tested a series of promoter deletion constructs for their response to bFGF. Deletion of the upstream region between −673 and −588 bp results in a significant loss of induction. Gel-shift analysis demonstrates that proteins present in ROS 17/2.8 nuclear extracts bind specifically to these sequences. This region alone was unable to confer the bFGF response on a minimal osteocalcin or an heterologous promoter. However, sequences between −678 and −476 bp, which also includes the vitamin D response element (VDRE), were able to confer bFGF inducibility on both a minimal osteocalcin and a heterologous promoter. These data suggest that induction of the human osteocalcin promoter by bFGF requires the interaction of more than one sequence element.
Funding Information
  • New South Wales State Cancer Council
  • Garvan Institute from the National Health and Medical Research Council