GRAVITY INTERPRETATION USING THE FOURIER INTEGRAL

Abstract
The gravitational anomalies of simple bodies (sphere, cylinder, and fault) were used to develop methods for analyzing gravity data in the frequency domain. The Fourier transforms of the functional representations of the theoretical gravitational anomalies of these bodies were obtained. Mathematical relations were formulated between the transform‐versus‐frequency relationships and the depths and sizes of the bodies. Compound gravity anomalies (multiple cylinders, fault, and cylinder) were analyzed, and the transforms were reduced to transforms of anomalies due to individual simple bodies. These methods of analysis were applied to theoretical anomalies using numerical techniques, and the accuracy of both depth and size determinations was within a few percent in all cases.