Tumor Necrosis Factor-α–Mediated Downregulation of the Cystic Fibrosis Transmembrane Conductance Regulator Drives Pathological Sphingosine-1-Phosphate Signaling in a Mouse Model of Heart Failure

Abstract
Background—Sphingosine-1-phosphate (S1P) signaling is a central regulator of resistance artery tone. Therefore, S1P levels need to be tightly controlled through the delicate interplay of its generating enzyme sphingosine kinase 1 and its functional antagonist S1P phosphohydrolase-1. The intracellular localization of S1P phosphohydrolase-1 necessitates the import of extracellular S1P into the intracellular compartment before its degradation. The present investigation proposes that the cystic fibrosis transmembrane conductance regulator transports extracellular S1P and hence modulates microvascular S1P signaling in health and disease. Methods and Results—In cultured murine vascular smooth muscle cells in vitro and isolated murine mesenteric and posterior cerebral resistance arteries ex vivo, the cystic fibrosis transmembrane conductance regulator (1) is critical for S1P uptake; (2) modulates S1P-dependent responses; and (3) is downregulated in vitro and in vivo by tumor necrosis factor-α, with significant f...