A permeabilized cell system identifies the endoplasmic reticulum as a site of protein degradation.
Open Access
- 1 December 1991
- journal article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 115 (5), 1225-1236
- https://doi.org/10.1083/jcb.115.5.1225
Abstract
Analysis of the fate of a variety of newly synthesized proteins in the secretory pathway has provided evidence for the existence of a novel protein degradation system distinct from that of the lysosome. Although current evidence suggests that proteins degraded by this system are localized to a pre-Golgi compartment before degradation, the site of proteolysis has not been determined. A permeabilized cell system was developed to examine whether degradation by this pathway required transport out of the ER, and to define the biochemical characteristics of this process. Studies were performed on fibroblast cell lines expressing proteins known to be sensitive substrates for this degradative process, such as the chimeric integral membrane proteins, Tac-TCR alpha and Tac-TCR beta. By immunofluorescence microscopy, these proteins were found to be localized to the ER. Treatment with cycloheximide resulted in the progressive disappearance of intracellular staining without change in the ER localization of the chimeric proteins. Cells permeabilized with the pore-forming toxin streptolysin O were able to degrade these newly synthesized proteins. The protein degradation seen in permeabilized cells was representative of that seen in intact cells, as judged by the similar speed of degradation, substrate selectivity, temperature dependence, and involvement of free sulfhydryl groups. Degradation of these proteins in permeabilized cells took place in the absence of transport between the ER and the Golgi system. Moreover, degradation occurred in the absence of added ATP or cytosol, and in the presence of apyrase, GTP gamma S, or EDTA; i.e., under conditions which prevent transport of proteins out of the ER. The efficiency and selectivity of degradation of newly synthesized proteins were also conserved in an isolated ER fraction. These data indicate that the machinery responsible for pre-Golgi degradation of newly synthesized proteins exists within the ER itself, and can operate independent of exogenously added ATP and cytosolic factors.Keywords
This publication has 64 references indexed in Scilit:
- Transmembrane Helical Interactions and the Assembly of the T Cell Receptor ComplexScience, 1990
- Isolation of a functional vesicular intermediate that mediates ER to Golgi transport in yeast.The Journal of cell biology, 1990
- Intracellular degradation of unassembled asialoglycoprotein receptor subunits: a pre-Golgi, nonlysosomal endoproteolytic cleavage.The Journal of cell biology, 1989
- Precursors of chondroitin sulfate proteoglycan are segregated within a subcompartment of the chondrocyte endoplasmic reticulum.The Journal of cell biology, 1989
- The propeptide of preprosomatostatin mediates intracellular transport and secretion of alpha-globin from mammalian cells.The Journal of cell biology, 1989
- Reconstitution of SEC gene product-dependent intercompartmental protein transportCell, 1988
- Involvement of GTP-binding “G” proteins in transport through the Golgi stackCell, 1987
- Semi-intact cells permeable to macromolecules: Use in reconstitution of protein transport from the endoplasmic reticulum to the Golgi complexCell, 1987
- Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas.The Journal of cell biology, 1986
- Intracellular Aspects of the Process of Protein SynthesisScience, 1975