Phosphorylation Meets Ubiquitination: The Control of NF-κB Activity
Top Cited Papers
- 1 April 2000
- journal article
- review article
- Published by Annual Reviews in Annual Review of Immunology
- Vol. 18 (1), 621-663
- https://doi.org/10.1146/annurev.immunol.18.1.621
Abstract
NF-κB (nuclear factor-κB) is a collective name for inducible dimeric transcription factors composed of members of the Rel family of DNA-binding proteins that recognize a common sequence motif. NF-κB is found in essentially all cell types and is involved in activation of an exceptionally large number of genes in response to infections, inflammation, and other stressful situations requiring rapid reprogramming of gene expression. NF-κB is normally sequestered in the cytoplasm of nonstimulated cells and consequently must be translocated into the nucleus to function. The subcellular location of NF-κB is controlled by a family of inhibitory proteins, IκBs, which bind NF-κB and mask its nuclear localization signal, thereby preventing nuclear uptake. Exposure of cells to a variety of extracellular stimuli leads to the rapid phosphorylation, ubiquitination, and ultimately proteolytic degradation of IκB, which frees NF-κB to translocate to the nucleus where it regulates gene transcription. NF-κB activation represents a paradigm for controlling the function of a regulatory protein via ubiquitination-dependent proteolysis, as an integral part of a phosphorylationbased signaling cascade. Recently, considerable progress has been made in understanding the details of the signaling pathways that regulate NF-κB activity, particularly those responding to the proinflammatory cytokines tumor necrosis factor-α and interleukin-1. The multisubunit IκB kinase (IKK) responsible for inducible IκB phosphorylation is the point of convergence for most NF-κB–activating stimuli. IKK contains two catalytic subunits, IKKα and IKKβ, both of which are able to correctly phosphorylate IκB. Gene knockout studies have shed light on the very different physiological functions of IKKα and IKKβ. After phosphorylation, the IKK phosphoacceptor sites on IκB serve as an essential part of a specific recognition site for E3RSIκB/β-TrCP, an SCF-type E3 ubiquitin ligase, thereby explaining how IKK controls IκB ubiquitination and degradation. A variety of other signaling events, including phosphorylation of NF-κB, hyperphosphorylation of IKK, induction of IκB synthesis, and the processing of NF-κB precursors, provide additional mechanisms that modulate the level and duration of NF-κB activity.Keywords
This publication has 230 references indexed in Scilit:
- IκBα Ubiquitination Is Catalyzed by an SCF-like Complex Containing Skp1, Cullin-1, and Two F-Box/WD40-Repeat Proteins, βTrCP1 and βTrCP2Biochemical and Biophysical Research Communications, 1999
- The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cellCurrent Biology, 1999
- The human F box protein β-Trcp associates with the Cul1/Skp1 complex and regulates the stability of β-cateninOncogene, 1999
- All three IκB isoforms and most Rel family members are stably associated with the IκB kinase 1/2 complexEuropean Journal of Biochemistry, 1999
- Identification of two distinct tumor-suppressor loci on the long arm of chromosome 10 in small cell lung cancerOncogene, 1998
- The Transcriptional Activity of NF-κB Is Regulated by the IκB-Associated PKAc Subunit through a Cyclic AMP–Independent MechanismCell, 1997
- Dissection of TNF Receptor 1 Effector Functions: JNK Activation Is Not Linked to Apoptosis While NF-κB Activation Prevents Cell DeathCell, 1996
- Threshold responses to the dorsal regulatory gradient and the subdivision of primary tissue territories in the Drosophila embryoCurrent Opinion in Genetics & Development, 1996
- Protein ubiquitination involving an E1–E2–E3 enzyme ubiquitin thioester cascadeNature, 1995
- The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53Cell, 1993