Enhancement of Human Cord Blood CD34+ Cell-Derived NK Cell Cytotoxicity by Dendritic Cells

Abstract
NK cells and dendritic cells (DCs) are both important in the innate host defense. However, the role of DCs in NK cell-mediated cytotoxicity is unclear. In this study, we designed two culture systems in which human cord blood CD34+ cells from the same donor were induced to generate NK cells and DCs, respectively. Coculture of the NK cells with DCs resulted in significant enhancement of NK cell cytotoxicity and IFN-γ production. However, NK cell cytotoxicity and IFN-γ production were not increased when NK cells and DCs were grown together separated by a transwell membrane. Functional studies demonstrated that 1) concanamycin A, a selective inhibitor of perforin/granzyme B-based cytolysis, blocked DC-stimulated NK cytotoxicity against K562 cells; and 2) neutralizing mAb against Fas ligand (FasL) significantly reduced DC-stimulated NK cytotoxicity against Fas-positive Jurkat cells. In addition, a marked increase of FasL mRNA and FasL protein expression was observed in DC-stimulated NK cells. The addition of neutralizing mAb against IL-18 and IL-12 significantly suppressed DC-stimulated NK cell cytotoxicity. Neutralizing IFN-γ Ab almost completely inhibited NK cell cytotoxicity against Jurkat cells. These observations suggest that DCs enhance NK cell cytotoxicity by up-regulating both perforin/granzyme B- and FasL/Fas-based pathways. Direct interaction between DCs and NK cells is necessary for DC-mediated enhancement of NK cell cytotoxicity. Furthermore, DC-derived IL-18 and IL-12 were involved in the up-regulation of NK cell cytotoxicity, and endogenous IFN-γ production plays an important role in Fas-mediated cytotoxicity.